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Abstract-The stress concentration along a rough surface is of importance for understanding the
nucleation of misfit dislocations and cracks in heteroepitaxial thin films and for general flaw
initiation at material surfaces exposed to environmental corrosion. In order to seek a basic under­
standing on this issue, a cycloid wavy surface subject to a uniform bulk stress is adopted as a model
problem. The elastic stress and displacement fields are determined using Muskhelishvili's conformal
mapping method. It is shown that a cusped cycloid surface generates a crack-like singular stress
field within a thin surface layer; under uniform tension this singularity is found to have identical
strength to a row of periodic parallel cracks. The path-independent J-integral requires that the
average surface strain energy density be identical to that in the bulk, implying that any stress
magnification along a rough surface must be compensated by unloading along some complementary
portions of the surface. Along the cusped cycloid surface, the strain energy distribution becomes
Dirac singular at the cusp tips, the rest of the surface being completely stress-free. Thus the effect
of cycloid cusps is to redistribute and concentrate all the surface strain energy per wavelength at a
single (cusp) point, and because of that we can claim that the cycloid surface is the most efficient
stress concentrator at a fixed wavelength. Even at a moderate bulk stress level this concentration
may be sufficient to cause failure or nucleation of defects.

The full evolution of a rough surface under stress and other corrosion mechanisms must be
solved by numerical methods. Our analytic solutions for a cycloid surface are of significant value
for guiding numerical computations and gaining insights into essential features of the evolution
process. From a global point of view, we show that a cusped cycloid surface becomes energetically
favorable once the surface wavelength exceeds a critical value determined from the competition
between the strain energy and the surface energy. From a local point of view, analysis of surface
diffusion behaviors along an almost cusped cycloid surface indicates that the cusps are stable once
they develop. The critical condition for formation of a cusped cycloid corresponds to the Griffith
energy balance being exactly satisfied at the cusp tips while the chemical potential remains nearly
constant along the rest of the surface. This implies spontaneous Griffith brittle fracture at tension
cusps if plastic relaxation is not present to relieve the stress singularity.

INTRODUCTION

The main focus of this paper is to study the stress concentration along a rough surface
which can be mathematically described by a cycloid with periodic cusps, as shown in Fig.
l(a) and in eqn (1) to follow. The major result to be reported is simple and yet somewhat
surprising. It is found that the cusped cycloid surface of Fig. 1(a) is subjected to the same
stress singularity and the same stress intensity factor as a row of periodic parallel cracks
shown in Fig. l(b). In other words, application of fracture mechanics would predict that
these two structures should fail at the same stress level, even though there are no apparent
"cracks" associated with the cycloid surface!

The present work has been primarily motivated by an effort to understand the surface
nucleation of misfit dislocations in heteroepitaxial thin films which are often subjected to
very large stresses, typically in the GPa range, due to lattice mismatch (Nix, 1989). In a
series of recent papers, Gao (1991a, b, c) used first-order boundary perturbation techniques
to analyse a stressed solid with slightly undulating surfaces and interfaces that differ mod­
erately from straightness; he pointed out that even a slight surface undulation can generate
significant stress concentration to cause deformation and fracture before the bulk stress
reaches a critical level. On the other hand, the elastic strain energy stored in the solid has been
identified as providing an intrinsic thermodynamic driving force that tends to destabilize an
initially flat surface and thus to promote the development of surface roughness; this
conclusion can be reached either by studying linearized kinetic equations along a slightly
wavy surface (Srolovitz, 1989; Spencer et al., 1991) or by showing that the strain energy
is always reduced when an initially flat surface is slightly perturbed in an arbitrary manner
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Fig. 1. Schematic diagrams of (a) a semi-infinite solid with a cusped cycloid surface and (b) an
infinite solid with periodic parallel cracks.

(Gao, 1991 b, c; Grinfe1d, 1993). Comparing the destabilizing effect of elastic energy with
the stabilizing force of surface energy at short wavelengths and that of gravitational energy
at long wavelengths, Gao (1991 b, c) concluded that once the bulk stress is sufficiently large,
an initially flat surface becomes unstable against a range of perturbations bounded by two
critical wavelengths; in highly stressed thin film structures, the most unstable wavelength
for surface instabilities is very small so that the variation of gravitational energy becomes
negligible and the instability can be simply regarded as a competition between the elastic
energy and the surface energy.

The previous linearized stability studies provided a likely explanation for the onset of
the island-like surface morphology, also known as the Stranski-Krastonov pattern
(Matthews, 1975; Van der Merwe, 1979), during growth or annealing of a heteroepitaxial
thin film. However, these studies relied on perturbation solutions of limited validity range,
hence not suitable for describing the full range of surface evolution after instability has
occurred. More accurate quantitative methods and solutions will be required to calculate
stress distribution along a rough surface of large slope variations and to simulate the
dynamic processes involved in the surface roughening. Solutions of analytic nature are
especially valuable because they can be used to guide and verify numerical computations.
For modelling purposes, the cusped cycloid surface shown in Fig. 1(a) appears to be
particularly appealing because it closely resembles an island morphology and, more import­
antly, it admits simple analytic solutions, as will be shown in the next section.

STRESS ANALYSIS OF A CYCLOID SURFACE

The cycloid mapping function
The parametric function:

x = ~+A sink~, y = A cosk~, (1)

for - 00 < ~ < 00, defines a periodic cycloid curve that can be used to describe a family of



Stress along a cycloid rough surface 2985

two dimensional wavy surfaces having A as the amplitude and k as the wavenumber; the
surface wavelength), is given by ). = 2n/k. For small Ak, the cycloid behaves like a cosine
curve y = A cos kx but when Ak --+ 1, it forms an island morphology with periodic cusps
atx = (2n+ l)n/kandy = -A (n = integer). Figure 2 plots the cycloid shapes for Ak = 0.3,
0.7 and 1.0. When Ak > 1, the cycloid curve loses physical significance due to self-crossing.

In this paper we shall only consider cycloid surfaces that are subjected to a uniform
lateral bulk stress of magnitude T, as in Fig. lea). In heteroepitaxial thin films this cor­
responds to the stress induced in the film by lattice mismatch. The solution procedure
involves use of the Muskhelishvili (1953) complex variable method with the mapping
function:

z = w(O = '+iA exp( -ikO, (2)

where i = J=l, z = x+iy and' = ~+i1]. The above function transforms the cycloid
surface of eqn (1) in the z-plane into a perfectly straight line along the ~-axis in the'-plane
and maps, accordingly, the physical domain beneath the surface conformally into the lower
half of the '-plane, i.e. 1] < O.

At this point, it is not without interest to note that the cycloid is a classic geometric
curve that has been studied in the context of calculus of variation by BernOUlli, Euler,
Newton, L'Hospital, etc. (Gelfand and Fomin, 1963). The cycloid curve is generated by
rolling a circle of radius A along a straight line, which can be viewed as a special case of a
more general class of curves known as the hypocycloids that are generated by rolling a
small circle along the inside rim of a large circle. Similarly, by rolling a circle along the
outside rim of another circle, one obtains yet another class known as the epicycloids. These
geometries have received limited attention in the past, particularly by some of the early
Russian researchers in the 194Os. For example, a noncusped hypocycloid hole was studied by
Shapiro in 1941 (Muskhelishvili, 1953; Savin, 1961). Unfortunately, theformationofcusp­
like stress singularities due to surface diffusion, jls we discuss in this paper, appears to have
been overlooked and perhaps deliberately avoided by the early Russian researchers who
were not equipped with the modern fracture mechanics concepts on stress singularities. The
cycloid mapping function in eqn (2) can be obtained as a special case of the hypocycloid
mapping (by letting the radius of the larger circle approach infinity) or epicycloid mapping
functions discussed by Muskhelishvili (1953). The hypocycloid and epicycloid cusps and
their formation will be studied in a later paper.

The complex potentials
For two dimensional elasticity problems, following Muskhelishvili (1953), the dis­

placements and stresses can be represented by two complex potentials as:
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Fig. 2. Cycloid surfaces with Ak = 0.3, 0.7 and 1.0.
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lTu+lTyy = 2[¢'(z)+¢'(z)),

(3)

(4)

(5)

where jl. denotes the shear modulus and v the Poisson ratio. For simplicity, we assume plane
strain conditions here and throughout this paper. One may obtain the solutions for plane
stress by replacing v in the results for plane strain with vj(l +v). The resultant force,
I = Ix + if,., acting on a segment from a fixed point to z is given by:

¢(z)+z¢'(z) + ljJ(z) = il+constant,

where the constant can be ~aken arbitrarily without affecting the stress state.

(6)

Complex potentials in the mapping coordinates
The cycloid mapping function, eqn (2), is equivalent to adopting a set of curvilinear

e- and /1-coordinates to describe the elastic field; these are shown in Fig. 3 for Ak = 1. It
will be helpful to express the stresses and displacements in terms of the mapping coordinates
e and /1. The angle r:t. between the x-axis and the e-axis is:

ia w'(O i2a w'(O
e = Iw'(OI' e = w'(O'

(7)

For convenience the same symbols for the complex potentials will be used in the (-plane,
i.e. ¢[w(O] = ¢(O and ljJ[w(O] = ljJ(O. With the following convention:

d¢(z) = _1_ d¢(O = <1>(0 dljJ(z) = _1_ dljJ(O = 'P«()
dz w'(O d( , dz w'(O d( ,

one can write the stress field as :

lT~~ +lT~~ = 2[<1>(0 + <I>«()),

2 -
lT~~ -lT~~ + 2ilT~~ = = [w(O<l>'(O +w'(O'P(O].

w'(O

The displacement field and the resultant force are obtained from:

~~ -~6d r:sfffir-r-

Fig. 3. The curvilinear ~-'1 coordinates for a cusped cycloid surface.

(8)

(9)

(10)
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2p.(ux +iuy) = (3-4v)c/J(O-w(O<D(O-t/J(O,

c/J(O+w(O<D({)+t/J(o = if + constant.
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(11)

(12)

The final solution
The cycloid surface problem can be solved analytically using the conformal mapping

method of Muskhelishvili (1953). Let the solution be written in the form:

(13)

where c/Joo and t/J 00 are the potentials of the uniform stress state T,

(14)

(15)

The functions c/Js and t/J" which represent "disturbances" due to the rough surface, are
analytic in the lower half (-plane and will be determined from the traction-free boundary
condition.

There are two alternative ways to express the boundary condition. One requires that
(1~~ + i(1e~ vanish on the surface, which by eqns (9), (10) and (13)-(15) result in:

This type of boundary condition can also account for surface tractions. Another
approach, which appears to be more convenient for the problem at hand, is to let the
resultant force f vanish along the boundary. Substituting eqns (13)-(15) into (12), letting
( = ~, and ignoring an arbitrary constant, one obtains:

These two boundary equations are equivalent in that each can be used to deduce the
other by integration or differentiation.

The original elasticity problem is now reduced to one of solving for functions c/Js(O
and t/Js(O which are analytic in the lower half (-plane and satisfy the boundary condition
(17). Equating the functions which are analytic in 1m [(] ~ 0 on both sides of eqn (17), and
then equating those analytic in 1m [(] ~ 0 yield the solution,

iTA
c/Js(O = - 2 exp (-ikO,

t/J .«() = iTA [ex (-ikO _ Ak+ik( exp (-ik()]
s 2 p I + Ak exp ( - ike) .

(18)

(19)

In the above procedure, a subtle point worth mentioning concerns the term
w«()<Ds(oI,~e in eqn (17), in which w(o is analytic in 1m [(] ~ 0 but <Ds«() is analytic in
1m [(] ~ O. The right hand side of eqn (17) consists of two terms, one analytic in 1m [(] ~ 0
and the other analytic in 1m [(] ~ 0, which suggests that w(O<Ds«() should either have a
clearly defined analytic region or be able to be split into functions which have this property.
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One may thus proceed by assuming (1)(C)<I>s(O to be analytic in 1m [C] ;?; 0, and then verify
this assumption from the solutions obtained,

The final solution to the cycloid surface problem is :

T
<p(O = 4 [C-iA exp( -ikC)],

ljJ(O = - ![C+iA Ak+ikC exp (-ikO]
2 1+Ak exp ( - ikO '

(20)

(21 )

Substituting these expressions into eqns (3)-(5), one finds that the stresses and dis­
placements can be written more explicitly as:

where

+ . = T [(3-4 )(Y _ 'AP) 2([-iA
2
k)-(C+iAP)(I-AkP)]u,- lU" 8 v .. I + - ,. - /-l I+AkP

P = exp ( - ikO, P = exp (ik[),

TAk P iTAk2p
<1>,(0 = - -2- 1+AkP' <1>;(0 = 2(1 +AkP)2'

'II - TAk [P Ak+P _ Ak+ikCP]
,(0 - 2 I+AkP + (I+AkP)2 (I+AkP)3'

(22)

(23)

(24)

(25)

(26)

(27)

An arbitrary rigid body motion can be superimposed on the displacement field without
affecting the stresses. Equati'ons (22)-(24) show that the disturbance due to the surface
roughness attenuates exponentially in the depthwise direction (i.e. the negative y-direction)
with a characteristic length of 11k = A12n. In other words, only within a small boundary
layer beneath the surface is the elastic field significantly affected by the surface roughness;
away from the layer the uniform stress field is quickly recovered. For example, the stress
field is found to be within 1% of the uniform state T at a depth of one wavelength
(A = 2nlk) measured from a cycloid valley for all cycloid amplitudes, including the cusp
case A = 11k. Similar observations have been made earlier for slightly undulating surfaces
by Gao (l991a) using perturbation methods.

Wang et al. (l991)t recently studied the problem of a concentrated point force acting
on a cycloid surface. In comparison, our problem involves a laterally applied uniform stress,
which is algebraically simpler than the point force problem. The solutions by Wang et al.
apparently do not have the correct asymptotic behavior near the point force. These authors
concluded in their paper "At near field the stress concentrates in the order llr2

, where r is
the distance from the load". This is wrong because no matter what the shape of the surface
is, the asymptotic stress field very close to a point force must behave as llr, a fundamental
feature of elastic Green's functions. Our preliminary investigation seems to suggest that the
correct solution for the point force problem should involve an infinite series, a feature not
existing in Wang et al.'s solutions. We suspect that their solution contains a higher order
singularity such as a force dipole at the force location.

t We are grateful to Prof. M. T. Hanson of University of Kentucky for pointing out this reference to us.
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The stress and displacement fields near a cycloid surface
The stress and displacement fields for the cycloid surface problem have been determined

explicitly in eqns (22)-(24) in terms of the mapping variable ,. Let us examine some basic
features of these solutions. First, the hoop stress u" along the surface can be obtained
directly from eqns (22) and (26) (the traction components U~~ and U,~ vanish), giving:

(28)

The maximum stress concentration occurs at a valley and the minimum occurs at a
peak, with magnitudes: .

(U")max = T(l +Ak)/(I- Ak), (U,,)min = T(l- Ak)/(l +Ak). (29)

As Ak -+ 1, the cycloid surface develops periodic cusps where the hoop stress diverges
to infinity, signaling a stress singularity. The nature of this singularity will be discussed in
the next section.

For a better understanding of the stress distribution near a cycloid surface, the stress
and deformation fields are displayed in Figs 4-6 for three representative cases: Ak = 0.3,
0.7 and 0.99. Part (a) of these figures plots the contours of the maximum principal stress
Umax (solid lines) and those of the maximum shear stress 'tmax (dashed lines). Due to the
symmetry of the problem, only one half period of the cycloid is displayed. The stresses are
calculated assuming plane strain conditions and the value of each contour is normalized by
the reference value in the uniform stress state, which is T for Umax and TI2 for 'tmax ' In all
cases investigated, there are three distinct zones for Umax and 'tm... which are divided by two
contours of unit value (i.e., no stress change). The first zone, lying between the surface and
the first unity-contour, is a region of stress relaxation for both Umax and 'tmax ' In this region,
Umax and 'tmax attain their minimum values at the cycloid peak, and then increase gradually
away from the surface. Comparison of Figs 4-6(a) indicates that the location of each stress
contour remains almost unchanged as the wave-amplitude A increases. In other words, the
augmented part of the solid due to the increase in A does not seem to affect the original
stress distribution much at distances away from the valley; the stresses in the augmented
part continue to decrease until they completely vanish as Ak -+ 1. The relaxation zone of
the shear stress is smaller than that of the principal stress.

The second region, between the two unity-contours, is a region of stress magnification.
The stresses reach the maximum at the valley and attenuate exponentially away from there.
For the three cases considered in Figs 4-6(a), the maximum stress concentration factor,
umaxlT or 2'tmaxIT, is of magnitude 1.86,5.67 and 199, res~ctively. Although (Tmax and 'tmax
increase rapidly with A, the location and magnitude of each stress contour do not change
much, so that zones of high stress concentration are localized to the close vicinity of the
valley which becomes a cusp as Ak -+ 1. The domain ofsignificant shear stress concentration
is smaller than that, of the maximum principal stress.

The third region is found below the second unity-contour where a weak stress relaxation
is observed. In this region, both Umax and 'tmax can be treated as being uniform for any
practical purposes.

Part (b) of Figs 4-6 compares the deformed and undeformed configurations of a
rectangular mesh near the cycloid surface. These figures are drawn in realistic aspect ratios
with a 5% bulk strain. The displacements are assumed to be zero at the valley and plane
strain is assumed in the calculation. Observe that for the case Ak =0.99 the surface segments
are almost unstretched but are subjected to rigid body rotations.

STRESS SINGULARITY AT A CYCLOID CUSP: THE CASE Ak = 1

From the point of view of mechanical failure, the limiting case Ak = I shown in Fig.
I(a) is of special interest because a singular stress field is induced by the cycloid cusps along
the surface.
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Ak=O.3, v-O.3.

0.5

o

-0.5 0.9
----------

ky -1 o.
.- .. ......

-1.5 .-
1.0/

-2
I. ,

-2.5 ,

I--I~)I
,
,
,,

-3
,

0 1 2
(a)

0.5

1.5

1.1

1.0

3 kx

o

-0.5

-1

-1.5

-2

f- rOo r -r- -r-~ ~
rOo -rOo -!..: .._,.~~
l-- :- .. r--

r:H-++++-H-H-l-+++-++-++-+--+-l

l--H-++++-H-H-l-:+-#-........;j..-4-......=.+9

i~~ __I __ __ --
I I I I I

I __1 __ t __L __I I __

-2.5
: I: I I I I I •:__ __ .. 1__ '__ ' __ l __ t __t __' __ I __

:__ :__ L-1- _:_ J __: __ ~ __: ..J __J __

_3'----=.L=-<-.::.:J.",,_:.=;J.=_l",_:.=;-1:':;-0.::-.::.:1,,-,-:.::l1.:.-=.=_Lcr..:-:.::_L:J:J"-""'_:::I:-'::':--:.t::-""-::.t-.::.:--:.:t":.I;.'-:..i..---l

o 2 3
(b)

Fig. 4. For a cycloid surface with Ak = 0.3 (a) the contour plots of the maximum principal stress
U max and the maximum shear stress !max> (b) undeformed (solid lines) and deformed (dashed lines)

meshes in the solid under 5% bulk strain.

Depth-variation of the normal stress (Jxx

To understand the nature of the stress singularity at a cycloid cusp, let us first examine
the depth-variation of the normal stress an with distance from a cusp tip.

One may verify from eqn (2) that the cycloid cusps are located along vertical lines
x = ¢ = (2n+ I)n/k = (2n+ 1);"/2 (n = integer) in both z- and (-planes. Substituting
( = n/k+ i'1 into eqns (22) and (23), and taking Ak = I, the depth-variation of the (Jxx below
a cusp tip is determined as :

where the mapping variable '1 is related to the physical coordinate y, and to the distance d
measured from the cusp tip, by :
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Fig. 5. For a cycloid surface with Ak = 0.7 (a) the contour plots of the maximum principal stress
Umax and the maximum shear stress 'maX> (b) undeformed (solid lines) and deformed (dashed lines)

meshes in the solid under 5% bulk strain.

(31)

From eqns (30) and (31), it can be shown that, as kd~ 0, (1xx behaves asymptotically
as:

(32)

Thus the stress field near a cusp tip is crack-singular. The structure of this singular
field is mode I with stress intensity factor:
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Fig. 6. For a cycloid surface with Ak = 0.99 (a) the contour plots of the maximum principal stress
Urn.. and the maximum shear stress 'max> (b) undeformed (solid lines) and deformed (dashed lines)

meshes in the solid under 5% bulk strain.

(33)

which is identical to that of a row of parallel cracks shown in Fig. 1(b) (Tada et ai., 1985).
Therefore, under uniform tension a cusped cycloid surface is subjected to the same

stress singularity and stress intensity factor as an infinite row of periodic parallel cracks.
Application of fracture mechanics would predict that these two structures fail at the same
stress level, even though there may be no apparent "cracks" associated with the cusped
rough surface! Strictly speaking, this equivalence is restricted to the uniform tension case.
A compressive bulk stress T will not induce a stress intensity factor for the periodic cracks
but can induce a negative mode I stress intensity factor for the cusps since the material
surfaces near a cusp are not in contact, at least not as complete as the crack surfaces. For
other loading cases such as the antiplane shear case considered in Appendix A, the stress
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field near a cycloid cusp is still crack-singular; however, the stress intensity factor deviates
from the corresponding periodic crack case.

As discussed before, the stress concentration attenuates exponentially with distance
away from a cycloid cusp. For Ak = 1 and kd» I, it can be shown that:

(1xx '" T[I - kd exp ( - kd)]. (34)

Figure 7 plots the depthwise variation of (1xx with distance from the cusp (solid line),
together with the stress variation near the periodic cracks (dashed line); the asymptotic
singular field (1xx = KdJW is shown as a dotted line for comparison.

Although the stress field associated with the periodic cracks has been studied by Koiter
(1961) and others, the solutions involve sophisticated integral transforms which require a
considerable numerical effort in extracting the complete stress field. We are currently
devising boundary-integral based procedures for numerically simulating the evolution of a
rough surface. Thus to our advantage, a numerical scheme based on the method ofErdorgan
et al. (1973) on singular integral equations and that of Fleck (1991) on periodic crack
problems was adopted in our calculation. Due to length restriction, numerical details are
ignored in this paper. It suffices to say that the essence of our procedure is to distribute a
continuous array of dislocations along the crack contour or a rough surface contour so
that the traction there is completely eliminated. Periodic cracks of finite length L = 48/k
and L = 60/k are used to simulate the semi-infinite crack array. The calculated stress
intensity factor is within 10- 3% of the exact solution. The depthwise distribution of (1xx for
the cycloid surface is found to be close to that for the periodic cracks, with the largest relative
difference being about 2% at kd = 0.37 (Fig. 7). It is also noted that, once kd exceeds 0.26,
(Jxx deviates more than 10% from the asymptotic K-field. In other words, the 90%
K-dominance zone is 0.26/2n, or about 4%, of the spacing A. between cusps, suggesting a
small zone of stress singularity, which is consistent with the behavior observed earlier in
Figs. 4-6.

The result plotted in Fig. 7 suggested that the normal stress distribution directly
beneath a cycloid cusp is practically the same as that beneath a crack tip in the periodic crack
case. A further question is whether such corrrespondence could be established everywhere in
the cusped solid. For that purpose, we calculated the full stress field for the periodic crack

102r---..----,..----,..----....---..,......--..,-----r--~
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T T
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lOoc=:5==::c...__.L.-_---L__-'-__..L-_----1-=-_-.J
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kd
Fig. 7. The variation of the normal stress (Jxx beneath a cycloid cusp and a periodic crack tip, the

asymptotic singular field for these variations.
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Fig. 8. The contour plots of the maximum principal stress U max and the maximum shear stress 'm.,

. in the periodic crack case.

case. Figure 8 plots the contours of the maximum principal stress and the maximum shear
stress within one half period of the periodically cracked body. These stress contours are
close, but not identical, to the cycloid stress contours in Fig. 6(a). We also found that the
strain energy density along the cycloid contour line in the periodically cracked body (shown
as a dotted line in Fig. 8) is very small, within 2% to 3% of the bulk strain energy density
Wo, suggesting that the cycloid line is indeed almost stress-free. These results lead to the
conclusion that the full stress field induced by a cusped cycloid surface is close, although
not identical, to that in the periodic crack case.

Proofof the asymptotic crack-tip field near a cycloid cusp
It can be directly verified that the singular stress field near a cycloid cusp has an identical

structure to the standard crack-tip field, with a universal character that the angular variation
of the stress field is independent of the global loading and geometry. The stress singularity
is completely determined once the stress intensity factors are given.

Without loss of generality, let us consider a cycloid cusp located at x = ;./2 and
y = - A, corresponding to ~ = A/2 and '1 = 0 in the'-plane. Set local coordinates:

Zc = z-(A/2-iA), C = (-A/2, (35)

at the cusp tip. Substituting Ak = I into the mapping function of eqn (2), one may show
that:

(36)

According to Muskhelishvili (1953), the complex potentials in the local coordinate
frame, 4>c«(c) and I/Ic(U, are related to those in global coordinates, 4>(0 and 1/1(0, as:

Substituting eqns (20) and (21) for Ak = 1 into eqn (37) and expanding the result in
powers of (c yields:
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(38)

Dropping the constants (which do not affect the stress field) and higher order terms,
then using eqn (36) and K[ = TJij2, we obtain:

(39)

These are just the complex potentials for the mode I crack-tip field for a crack pointing
in the negative Yc direction.

In summary, the stress field near a cycloid cusp for Ak = I is found to be crack­
singular, i.e. of singularity order d- I

/
2

• Under uniform tension the stress intensity factor at
a cycloid cusp is found to be identical to that of an array of periodic parallel cracks. This
provides an interesting connection between rough surfaces and sharp cracks; the latter has
been widely studied in the framework of Griffith-Irwin fracture mechanics.

J-integral analysis
The stress singularity near a cycloid cusp can be further understood from the path­

independent J-integral of fracture mechanics (Rice, 1968). Following eqn (28), the hoop
stress vanishes everywhere along the surface as Ak -. I, except at the tip of a cusp where it
diverges. For cracks oriented along the y-direction, the J-integral is defined as:

(40)

where w is the strain energy density and n j the normal vector along the integration contour
r. Let r be a closed contour composed ofseveralline segments: r = r 1+roo+r2+rc+r"
as shown in Fig. 9; r 1 and r 2 make no contribution to J because they are two vertical
straight lines at adjacent cycloid peaks where symmetry dictates that the shear stress vanish
and the displacement normal to the segments be constant; rc denotes a surface segment
which is completely stress-free, also not contributing to J. The only contributions to J come
from the loop r. around the cusp-tip, which gives the energetic force (energy release rate)
G on the singularity, and from the segment at infinity which gives the strain energy stored
in a strip of length Aand unit width. The conservation property of J leads to:

T T

r"
Fig. 9. The J-integral contour used to detennine the energy release rate G at a cusp on the cycloid

surface.
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G = AWo (41 )

where Wo = T 2(1- v)/4j1 is the strain energy density in the bulk. Application of the
Irwin relation G = K}(I-v)/2j1 immediately verifies the stress intensity factor given in
eqn (33).

The J-integral interpretation of the cycloid stress singularity is important because it
implies that a failure criteria based on J or K would remain approximately valid even if
there are some small scale geometric variations or nonlinear effects at the cycloid cusp. In
similar spirit to a discussion by Rice (1968) for small scale yielding at a crack tip, one
may argue that, since the J-integral remains conserved even for nonlinear elastic material
behaviors, the small scale local variations in geometry and material conditions near the
cusp will not affect the remote bulk stress field, hence they have little effect on the basic
energetic force WoA acting on the cusp.

For a noncusped cycloid surface, the same J-contour in Fig. 9 provides an interesting
condition on the surface strain energy distribution. The infinitesimal loop r, becomes
unnecessary in the noncusp cases. The two vertical lines r I and r 2 still make no contribution
to J due to symmetry. The contributions to J now come from the surface segment r"
which gives J~ W dx, and from the segment at infinity, which gives WoA. Conservation of J
requires:

1 fA(w(surface» = -;; wdx = wo,
It 0

(42)

which means that the average surface strain energy density, (w(surface», is a constant
independent ofthe surface geometry. It is not hard to see that this relation in fact holds for
any periodic rough surfaces. In that case, the individual contributions to J from the two
vertical lines r 1 and r 2 may not vanish, but they always cancel each other out because of
the periodicity and their opposite sense. The condition (w (surface» = Wo can be further
generalized to aperiodic surfaces if the period A is allowed to approach infinity, somewhat
reminiscent of the procedure of extending a Fourier series to a Fourier integral. If the
line integral over x in eqn (42) is replaced by an area integral, the same condition can
also be established for three dimensional nonplanar rough surfaces. Therefore, we con­
clude that:

(w(surface» = Wo, (43)

applies to any rough surfaces having a uniform bulk strain energy density Woo

The J-integral condition in eqn (43) suggests that any stress magnification (e.g. due to
a surface valley or cusp) along a rough surface must be compensated by relaxation along
some complementary portions of the surface and vice versa. Clearly, the optimum surface
shape for least stress concentration is a perfectly planar one. Along a cusped cycloid surface,
the strain energy distribution bcomes Dirac singular at the cusp tips, the rest of the surface
being completely unloaded. Therefore, the effect of cycloid cusps is to redistribute and
concentrate all the surface strain energy per wavelength at a single (cusp) point. In that
sense, the cycloid surface is the most efficient stress concentrator, or the optimum shape
for maximum stress concentration, at a fixed surface wavelength. Since the periodic parallel
cracks induce the same stress intensity factor as the cusped cycloid, it seems that any
cusped surfaces between the two configurations should induce similar, but no larger, stress
concentration. Even at a moderate bulk stress level this type of singular concentration
may be sufficient to cause failure or nucleation of defects.

The J-integral condition, eqn (43), may also be used to improve the accuracy of
numerical computations. For example, renormalizing a numerically computed surface stress
distribution using eqn (43) may lead to increased accuracy or perhaps a more stable
algorithm for simulating the surface evolution.
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ENERGY VARIATIONS ASSOCIATED WITH EVOLUTION OF A CYCLOID SURFACE

Several recent papers (Srolovitz, 1989; Gao, 1991b, c; Grinfeld, 1993; Spencer et al.,
1991) have been directed at understanding the thermodynamic driving force and energy
variations for the development of surface roughness in a stressed solid. In these studies,
linearized perturbation methods are used to show that elastic stains tend to destabilize an
initially flat surface because the strain energy is always reduced by surface roughening. The
full problem of evolution of a rough surface after initial instability will have to be solved
using numerical methods. Analytical studies, if their limitations are well undestood, will be
helpful to check and guide numerical computations, and may also provide valuable insights
into the role of major competing factors such as the strain and surface energies during
surface evolution. In the following, we present a study ofglobal energy variations associated
with evolution ofa cycloid surface, in which the surface will be restricted to a cycloid shape
and the surface "evolution" is achieved by varying the amplitude parameter A. In particular,
we are interested in finding out whether the development of a cusped cycloid surface is
energetically favorable. The analysis procedure follows closely that developed earlier by
Gao (I991b,c).

The strain energy variation for a shape change of an elastic body was studied by Rice
and Drucker (1967). The energy change associated with a moving interface beteen dissimilar
materials was studied by Eshelby (1970). The implication of these studies is that the strain
energy change associated with an infinitesimal configurational perturbation bx along the
cycloid surface can be written as :

bU = fw(s)n' bx ds, (44)

where w(s) denotes the strain energy density distribution and n denotes the outward normal
vector of the surface.

We shall assume that the total mass is conserved in the development of surface
roughness, as in a diffusional mass transport. Shifting the x-axis to the "neutral" position,
the mass-conserved cycloid surface profile can be written as:

(45)

This profile has the property that the net volume change, which is proportional to the
integral J~ y dx, always remains zero for any cycloid amplitude A.

Imposing an infinitesimal amplitude variation bA, the points along the mass-conserved
cycloid surface of eqn (45) will move by :

bx = [sin k~ ex + (cos k~ - Ak)ey]c5A,

where ex and ey are unit vectors in the x and y directions. Also, one may show that:

and

(1_A 2k 2)2

w(~) = w0(l+2Akcosk~+A2k2)2'

(46)

(47)

(48)

where wo = T 2(1-v)/4{l denotes the bulk strain energy density.
Substituting the above expressions for w, c5x, and n ds into eqn (44), dividing both

sides by c5A, and then letting bA approach zero, one finds that the rate of change of the
strain energy in one period of the cycloid with the amplitude A as:

$AS 3(1:21-I



2998 C. CHIU and H. GAO

(49)

Therefore, the strain energy is always reduced by enlarging A toward the cusp limit
A = l/k = A/2n. This provides a driving force for the development of surface roughness
under stress corrosion. The total strain energy releasd in developing a cycloid surface of
amplitude A from a perfectly flat surface is obtained by integrating the energy derivative,
eqn (49), giving:

(50)

The above results are formally coincident with those derived by Gao (1991 b) for a
slightly undulating cosine surface using linear perturbation techniques. The reason is that
a cycloid is asymptotically identical to a cosine curve at small amplitude (Ak « 1), combined
with the fact that the exact strain energy reduction rate of a cycloid surface is linear in A.
Gao (1991c) also derived explicit solutions for energy variation associated with slightly
roughened surfaces in anisotropic elastic solids, in which case the cycloid-surface solution
has not yet been developed.

Working against the strain energy, the surface energy increases with the surface rough­
ness and suppresses instabilities at short wavelengths. One may also include the effect of
gravity. Gao (1991b) showed that if the surface is pointing upwards opposite to the
gravitational force, the gravity tends to suppress instabilities at long wavelengths. In the
case of highly stressed solids such as thin films, the gravity effect can be ignored since the
most unstable instability wavelength is typically of micron or submicron scale.

Neglecting material anisotropy, the surface energy is a product of the surface area and
the surface energy density y, which for one period of the cyclolid surface is:

(51)

Differentiating eqn (51) with respect to A gives the rate ofchange of the surface energy
with the cycloid amplitude A, which may be written as:

aEs i2n1k k(cosk~+Ak)
bEs = - bA = ybA d~.

aA 0 Jl +2Ak cosk~+A2k2
(52)

At this point, let us note in passing that an alternative variational formula for surface
energy change similar to the strain energy formula, eqn (44), is (Alexander and Johnson,
1985):

(53)

These two eqns, (52) and (53), are equivalent until the cusp is formed. In the cusp case, the
variational eqn (53) breaks down but the more direct formula, eqn (52), remains valid, as
shown in Appendix B. The variational formula, eqn (53), is however, more helpful in
deriving the chemical potential for surface kinetics equations.

The sum of eqns (49) and (52) gives the total energy variation with respect to A,
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At the initial instability when Ak is small, it can be shown that:

oEtot I- ~(-4wo+kY)1tA.
oA Ak«1

2999

(54)

(55)

The critical wavenumber for initial instability is then ker = 4wolY, corresponding to
A.er = 1tYI2wo, which is consistent with results presented in Srolovitz (1989), Gao (1991b),
Grinfeld (1993) and Spencer et al. (1991). Gao (1991b) also argued that, since the driving
force per unit surface area for diffusion is proportional to k oEtotloA and a diffusion process
would involve transport of mass in an area of order Alk over a distance 11k, the most
unstable instability mode which grows fastest at the initial stage should correspond to
maximizing the quantity k 30EtotloA, giving k = kdiffusion = 3woly. Under conditions such
as evaporation or condensation, the fastest growing mode should be the one releasing
most energy per unit area, corresponding to maximizing koEtotloA, which yields
k = keondensation = 2woly. These results confirm those obtained by Srolovitz (1989) via
kinetic equations.

When the cusp is formed, eqn (54) reduces to:

oEtot I = 4(Y- 1two).
oA Ak= I k

(56)

The critical wavenumber kler for the development of a cusped cycloid surface is defined by
letting eqn (56) vanish, giving:

klcr = 1twoly· (57)

Note k er > k ler > kdiffusion > keondensation, indicating that the fastest growing modes, by
diffusion (during annealing) or by condensation (during growth), at the initial instability
have the potential to develop into a cusped rough surface. Figure 10 plots (klwo)oEtotloA
versus Ak, with k taken as the three special values: k = kim kdiffusion and keondensation'
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Fig. 10. The variation of energy derivative (kjwo) fJEtotjfJA associated with evolution of a cycloid
surface.
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As the surface changes from a perfectly flat shape into a fully cusped cycloid, the total
surface energy change should be :

AE,=y[ r; JI+2AkCOSke+A 2ede -).] y(8-2n)A. (58)Jo Ak= I

Combining this result with eqn (50), the overall energy change in the transition is:

AEtot = A[y(8-2n)- 2wonjk]. (59)

The strain energy dominates for sufficiently small k, so that AEtot '" - 2woAni
k = -2wonjk2 as k -+ O. Once k < 2wonjy(8-2n) = 3.66wolr, the energy of the cusped
cycloid is already smaller than a perfectly flat surface. For k'cr ( = nwofr) < k < 3.66wojy,
the cusped cycloid is not the most favorable configuration among all cycloid shapes.
Only when k < klcr does the cusped cycloid become the most preferred state among
the cycloid family. In that case, are there any other surfaces still more favorable than a
cusped cycloid? This question will have to be answered by a numerical study.

For initial stability analysis the two dimensional plane strain results can be directly
applied to the three dimensional configuration of a planar surface under biaxial loading.
This is because a three dimensional perturbation wave can always be decomposed into two
two-dimensional perturbation waves, in the spirit :

y = A cos ktx cos k3X3 = (Aj2) cos kx' + (AI2) cos kx", (60)

where X3 denotes the coordinate axis normal to the x-y plane, k = Jk,;+kL
kx' = kxx+k3X3 and kx" = kxx-k3X3' In this manner the three dimensional perturbation
problem is decomposed as a linear superposition of two two-dimensional plane strain prob­
lems in the x'-y and the x"-y planes. For biaxial loading, it can be shown that the critical
wavelengths such as ken kdiffusion, keondensation derived from plane strain analysis remain valid.
Gao (l99Ia) showed that the three dimensional effects tend to slightly relax the stress
concentration at the valleys (by 5-12% for Poisson ratio v ranging from 0.25-0.35).

The cycloid surface we have studied results in downward-pointing cusps as Ak -+ 1.
This shape has been chosen for its similarity to the island morphology and more importantly,
for its convenience in analytical studies. There is another class of cycloid surfaces which
results in upward-pointing cusps as Ak -+ 1. For lack of a better terminology, we refer to
this class as crest-like cycloid surfaces. The elasticity problem for a crest-like cycloid can
not be solved analytically because the corresponding mapping function involves a term
exp (ikO which is not analytic, hence not conformal, in the material region. We have
numerically studied this problem and our results presented in Appendix C show that the
crest-like cycloids are less interesting because the strain energy release rate in forming
upward-pointing cusps is substantially less than that for the cusp-like case. A simple
singularity analysis also shows that the stresses at an upward-pointing cusp is identically
zero. Perturbation analyses of the stress field (Gao, 1991a) of slight undulating surfaces
have indicated that a protruding part over a flat surface is unloaded very quickly. The
surface energy dominates along these portions, and this eliminates any possibility of forming
a cusp. In other words, upward-pointing cusps are intrinsically unstable.

SURFACE DIFFUSION ALONG AN ALMOST-CUSPED CYCLOID SURFACE

In the previous section, it has been shown that, from a global point of view, a cusped
cycloid surface with crack-like singularities becomes energetically favorable below a critical
wave number kler (equivalently, beyond a critical wavelength A1er)' The cusps may in turn
playa significant role in nucleating defects leading to plastic deformation or brittle fracture,
as will be discussed later. Another question that needs to be resolved at this point is the
stability of cycloid cusps, i.e. whether such cusps will be smoothed out, hence eliminated,
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by mass transport mechanisms such as evaporation, condensation and surface and bulk
diffusion.

We will be particularly interested in understanding the stability of a cycloid cusp
against surface diffusion. For that purpose we consider a nearly-cusped cycloid surface with
Ak::::; 1. At this nearly-cusped state, let the surface diffusion be suddenly set on stage (a
thought experiment). The question to be posed is "Will the induced surface movement at
this onset of diffusion tend to promote or eliminate the cusp formation?" In other words,
will the diffusion tend to increase or decrease the local curvature, Kv> at a nearly-cusped
cycloid valley? Since the curvature at a valley is negative, the cusps are said to be stable if
bKv < O,corresponding to K v increasing in absolute magnitude (sharper); oppositely, the
cusps are unstable if bKv > 0, corresponding to K v decreasing in magnitude. In the latter
case, a nearly-cusped valley tends to be smoothed out by diffusion.

It can be shown that the curvature variation bK(S) at a surface point Sassociated with
an infinitesimal surface movement bun(s) is:

(61)

where S is the arc length position, and the direction of bUn is along the outward normal of
the surface. This formula can be used to calculate bKv > °once bun(s) is known.

Chemical potential along a cycloid surface
The surface movement bun(s) is controlled by the distribution of the chemical potential

x(s). The variational formulae in eqns (44) and (53) suggest that x(s) may be written as
(Herring, 1950; Srolovitz, 1989; Spencer et al., 1991):

x(s) = Xo+ynK(S) +nw(s) , (62)

where Xo is a reference value, K(S) the surface curvature, w(s) the surface strain energy
density and n the atomic volume. Along a cycloid surface, the curvature K can be determined
as a function of the variable ~ from:

x" (~)y' (~) - x' (~)y" (~)
K = (X'<e)2+y'(~)2)3/2

which after inserting eqn (45) gives:

The local curvature at the cycloid valley is:

Kv = - (1- Ak) 2 .

The chemical potential now has the expression:

(63)

(64)

(65)

(66)

which reduces to the first-order formula by Srolovitz (1989) in the case of small Ak. At a
valley where cos k~ = - 1, Xhas the value Xv>

(67)

where Xo = Xo+nwo. In the above equation, kcr = 4wo/y is just the critical wavenumber for
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the initial surface instability, as in eqn (55). Interestingly, eqn (67) is valid for all Ak values,
from Ak « I up to the cusp limit Ak -+ I ; the strain energy competes with the surface
energy, each contributing a term proportional to the local curvature "v' The strain energy
prevails if k < k er and the surface energy prevails if k > ker' Thus the surface instability can
be interpreted as a signal for the beginning ofstrain energy dominance in chemical potential
at a cycloid valley. Since k\er < ken we conclude that once a cusped cycloid surface becomes
energetically favorable in the global sense, the local dominance of the strain energy is also
established.

Consider a nearly-cusped cycloid surface, Ak ~ I, in which case the strain energy
density is almost Dirac singular at the cusp location. The surface energy dominates every­
where along the surface except very near the cusp. In the close vicinity of the cycloid valley,
X has the asymptotic expansion:

(68)

where s is the surface arc length measured from the valley. Note that the coefficients of odd
powers in "vs vanish due to symmetry, and those of even powers are obtained from the
zeroth, second, and fourth order derivatives of X(s) at s = O. The zeroth order term is valid
for all Ak values, but the higher order terms are valid only for Ak ~ I. The strain energy
competes with the surface energy in all expansion terms of X(s). .

Motion ofa nearly-cusped cycloid surface at the onset ofsurface diffusion
The surface evolution can be affected by several mass transport processes such as

surface and bulk diffusion, condensation and evaporation. Here we only consider the surface
diffusion mechanism, in which case the induced surface movement in the normal direction,
Un, is governed by (Srolovitz, 1989; Spencer et aI., 1991):

(69)

where D s is the surface diffusivity, b is the number of atoms (sites) per unit area, 0 is the
atomic volume, kB is the Boltzmann constant, and TK the Kelvin temperature. The normal
direction is defined to be positive when pointing outward so that a negative value of oun/ot
at the valley means that the surface will move further downward (to form a cusp) and a
positive value means that the surface will move upward (to smooth out a cusp).

At the onset of surface diffusion, the second order derivative 02X/OS2 of the chemical
potential along a nearly-cusped cycloid surface can be obtained from eqn (66) using:

d~ I
ds = (l+2Akcosk~+A2k2)1/2'

For the cycloid surface, eqn (69) becomes:

(70)

oUn _ Dsb02Ak3{4wo(l- A 2k 2)2[7Ak+ (I + A 2k 2) cos k~ - 5Ak cos2
k~]

at - kBTK (l+2Akcosk~+A2k2)5

[7Ak-IIA 3k 3 +(l-5A 2k 2-2A 4k 4
) cosk~+6( -Ak+A 3k 3)cOS2k~+2A2k2 cos3 k~]}

-yk (l +2Ak cos k~+A2k2)9/2 .

(71)
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For Ak ~ 1, examination of the above expression indicates that the induced surface
motion by diffusion is dominated by the surface energy everywhere along the surface except
very near the valley where one finds the following expansion:

OUn = Dsc5n2K~ {(-3 16Wo) ( _ 352Wo) (Kv S)2 [( )6]}at kBT
K

y+ k + 57y k 2 +0 KvS . (72)

Thus, the magnitude of the surface motion near the cusp is proportional to K; and the
direction of the surface movement is determined by the competition between the strain
energy and the surface energy. The strain energy dominates and causes the cycloid valley
to move downward if k < 16wo/3y. Again, since klcr < 16wo/3y, once the formation of a
cycloid cusp becomes energetically favorable in the global sense, the behavior of the local
surface movement also exhibits a cusp-forming tendency. On the other hand, ifk > 16wo/3y,
the surface energy will suppress the strain energy and result in upward surface movement
to eliminate the cusp.

Figure II plots the variation of the normalized ounlot with arc length S for Ak = 0.999.
The origin S = 0 corresponds to the valley. Four cases where k = 16wo/3y, nWoly, 4woly,
and 2woly are chosen to visualize the influence of the wavenumber on the motion of a
nearly-cusped cycloid surface. As long as k < 16wo/3y, there is always a region near the
valley where the surface moves downward.

For numerical simulation of the formation process of surface cusps, it may be inter­
esting to note from Fig. II. that at the nearly-cusped state, the surface motion is highly
concentrated at the valleys with large magnitude. Within one wavelength of the nearly­
cusped cycloid, the size of the significant diffusion zone is very small, on the order of
ks = 10- 6, in comparison with the total arclength kslot = 8. Significant diffusion activity is
concentrated to a zone of order of the radius of local curvature at the valley, i.e. ~ llKv •

Stability ofa cycloid cusp against surface diffusion
The quantity ou~(s)lot at the valleys of a near-cusped cycloid can be obtained by

differentiating eqn (72) with s twice, giving
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Fig. II. The surface motion at a nearly-cusped cycloid valley with Ak = 0.999 at the onset of
diffusion for k = 16wo/3y, 4wo/y, 1tWo/y and 2woly.
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(73)

where K v is the local curvature given in eqn (65). Combining eqns (72), (73) and (61) leads
to the rate ofcurvature change at the nearly-cusped valleys at the onset of surface diffusion.
The result is :

(74)

This implies that the absolute magnitude of K v increases when k < 56wo/9y. In that
case, the cycloid cusps are stable against surface diffusion in that a nearly-cusped state tends
to evolve toward the fully-cusped state. On the other hand, when k > 56wo/9y, the cusps
are unstable in that the diffusion reduces the magnitude of the local curvature, and hence
tends to eliminate the cusp.

In summary, since k lcr < 16wo/3y < 56wo/9y, one concludes that once the cusped
cycloid surface becomes energetically favorable in the global sense, the strain energy com­
pletely dominates the surface energy in the local diffusion behavior near the cusps; the strain
energy is capable of preventing the surface energy from smoothing out and eliminating
the cusps once they develop.

Rigorously, the curvature change rate oKv /8t given in eqn (74) is only valid at the onset
of surface difusion. After the diffusion starts, the curvature change rate may not show such
a simple behavior. However, note that the expression on the right hand side of eqn (74)
only invulves material properties and global quantities such as y, wo, k, etc. For a rough
estimate it is not completely without merit to make the assumption that eqn (74) remains
approximately valid after the surface diffusion begins to drive the local curvature into a
cusp. If that assumption is approximately valid, then the evolution of K v can be obtained
by integrating eqn (74), giving:

where K~ is the local curvature at the onset of diffusion and,

kBTK k
t* = 24DsDQ2 (K~)4(56wo -9yk)'

(75)

(76)

At t = t*, the surface reaches the perfectly cusped state in which Kv = - 00. Only a
finite amount of time is needed in this "final stage" of cusp formation. Further, assuming
that the surface motion at the valley in eqn (72) is also approximately valid after diffusion
occurs, the surface movement Un of the valley during the final stage of cusp formation can
be determined by substituting eqn (75) into (72) and integrating (72) with t. The result is:

I (3Y- 16wo/k) [ ( t )1/4J
unls~o = 6K~ 9y- 56wo/k 1- 1- t* . (77)

The local surface velocity at the valley behaves as k~, hence approaching infinity as
the cusp is formed, k v --+ - 00. However, eqn (77) suggests that the total surface movement
remains finite, provided that our assumptions are valid.

FURTHER DISCUSSIONS

A nearly cycloidal surface with constant chemical potential
Analysis of global energy variations indicated that a cusped cycloid surface is ener­

getically favorable beyond a critical wavelength. In the previous section we have further
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shown that, once the global strain energy dominance is achieved, the cycloid cusps are also
locally stable in that once the cusp is formed, the strain energy prevents the surface energy
from smoothing out the cusp via mass transport. The evolution of a material surface by
diffusion or other kinetic processes is controlled by the chemical potentials X(s) given in
eqn (62). Along a cusped cycloid surface, the strain energy density w(s) vanishes everywhere
except at the cusp tips. Constant chemical potential requires modifiying the surface toward
one of constant curvature. Normally, changing the surface curvature will cause redis­
tribution of stresses and may induce a nonzero w(s). However, boundary perturbation
formulations (Gao, 1991b) suggest that the stress variation associated with perturbation of
a stress-free surface segment is zero within first order accuracy. Thus the strain energy along
a nearly cycloidal surface segment having cusps is also approximately stress-free as long as
the cusp vicinity is unperturbed. Assuming mass-conservation, the closest matching circular
arc for the cusped cycloid has radius of 0.5433,1.. As shown in Fig. 12, this arc matches the
cusped cycloid very well, with maximum deviation not exceeding 4%. Thus, a nearly
cycloidal surface with constant chemical potential can be found between a cusped cycloid
and its closest matching circular arc. Near the cusp we expect that the cusp configuration
should remain because of the dominance of strain energy. Away from the cusp we expect
that the surface should be close to the matching circular arc because the segment is stress­
free and the surface energy should dominate.

At the critical wavenumber k1er = nwo/y for cusp formation, the energetic force on the
cusp is:

(78)

But this is just the Griffith condition for energy balance at a crack-tip. Therefore, a
nearly cycloidal surface at klcr can satisfy the Griffith energy balance exactly at the cusps
while maintaining constant chemical potential along the rest of the surface. If the Griffith
condition, eqn (78), is postulated as a necessary condition for the formation of any cusp,
then during initial surface instability the perturbations fall into three distinct categories.
Perturbations with wavelengths smaller than .A.er tend to decay; those with .A.er < .A. < .A.ler

grow but will not lead to cusp formation because the Griffith condition requires the
minimum spacing between cusps to be .A.ler = 2y/wo. Finally, perturbations with wavelengths
exceeding .A.ler have the potential of growing into a cusped configuration. The final spacing
between the cusps will have values around .A.dilfusion under prevailing surface diffusion con­
ditions and around .A.eondensation under vapor condensation.

Nucleation ofmisfit dislocations from thin film surfaces
A basic understanding of the process of plastic deformation by misfit dislocations in

thin heteroepitaxial films has been provided through the pioneering works of Van der
Merwe (1963) and Matthews (1975), and through recent theoretical and experimental efforts
(Freund, 1987; Nix, 1989; Tsao, 1993). Based on this uqderstanding, it has been possible

Fig. 12. A cusped cycloid surface of wavelength A. and its closest matching circular arc of radius
O.5433,l..
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to predict and understand the thermodynamic and kinetic factors that control the move­
ments of individual dislocations in heteroepitaxial films. Despite this progress, it is still not
possible to predict or understand the overall kinetics ofstrain relaxation which involves the
nucleation and multiplication of a large number ofdislocations in these films. It is now well
known that dislocations form spontaneously in strained layers grown epitaxially onto
dislocation-free substrates once the layer thickness exceeds a critical value. Most evidence
suggests that some kind of nucleation must be occurring at the surface of the strained film.
However, if the film surface of a strained epitaxy layer is assumed to be flat, then it appears
that the activation energy barrier for dislocation formation is too high for a practical
nucleation process. The development of surface stress concentration, perhaps by a process
leading to a cusped rough surface, may be critical in explaining the observed dislocation
kinetics.

Our analysis of the stress singularity induced by a cycloid rough surface suggests that
the problem of dislocation nucleation from a rough surface may be closely associated with
the dislocation emission from a crack tip. The latter problem has been a topic of intensive
study during the past two decades. An extensive review of recent progress on this subject
was given by Rice (1992). It seems that many existing results on the modelling of the crack­
tip dislocation emission process can be borrowed to build a mechanistic theory for the
nucleation of misfit dislocations from micro-level singularities along the thin film surface.
This will be studied in future work.

There is preliminary evidence that thermally-assisted surface diffusion may have played
a vital role in the kinetics ofsurface roughness development. In a recent effort to understand
the kinetics and the mechanisms of strain relaxations in Si-Ge heteroepitaxial films, Gillard
et al. (1 ~92) measured the elastic misfit strain as a function of temperature using a laser
scanning technique. In that experiment, the relaxation due to dislocation processes is
controlled by varying the film thickness. Comparison between the elastic strains measured
at room temperature and those obtained at 700°C suggests that a portion of the strain
relaxation occurs almost instantly during the heat-up procedure. This relaxation can not
be satisfactorily explained by dislocation relaxation because some of the samples tested are
close to or below the critical thickness for dislocation generation. Part of the answer to such
"mysterious" relaxation at high temperature could lie with the development of the surface
roughne~s of the film. Further experimental and theoretical investigations will be needed
to fully resolve this issue.

Development ofsurface cracks in brittle solids
Our present work has also been partly motivated by an interest to understand the basic

mechanisms for surface flaw initiation in brittle material systems, such as ceramics, which are
being widely studied for high temperature applications. In most practical service conditions,
observations and postmortem failure analysis indicate (Stokes, 1972; Varner and Frechette,
1986; Frechette, 1990) that flaw initiation takes place at exposed material surfaces which
are subjected to hostile environmental corrosions.

Let us consider an ideally brittle solid with no plastic relaxation. Suppose that a cusped
surface has been developed through some kinetic process such as diffusion, annealing or
deposition. The following question can be posed "once the cusps are formed, can they further
propagate into the solid to develop macroscopic surface cracks?" The answer is obviously
positive if our conjecture that the Griffith criterion is a necessary condition for cusp
formation is correct and if the solid is under tension. In that case, the condition for crack
propagation and that for cusp formation are coincident with the Griffith criterion, that is:

G~2'Y. (79)

Thus an energetically favorable path for initiation ofbrittle fracture is achieved without
any activation energy barrier. An initially defect-free solid with a perfectly smooth surface
can gradually develop a rough surface morphology on the micro-scale through kinetic
processes, such as diffusion, creep, fatigue and any other physical or chemical mechanisms.



Stress along a cycloid rough surface 3007

Given enough time the development of cusps causes increasing concentration of stress
and energy, ultimately leading to catastrophic brittle fracture. The history of this failure
development seems to correspond to what is commonly known as the static fatigue of brittle
solids.

This flaw initiation mechanism could have important applications to the understanding
ofstrength degradation in advanced structural materials including various types ofceramics,
polymer, carbon, intermetallics and their composites. For example, dislocation motions are
to a large extent inhibited in ceramic materials due to their strong covalent type atomic
bonding. The initiation of brittle fracture by development of surface roughness seems to be
a viable mechanism for failure in these materials. It will be interesting to use the cycloid
surface as a model to study brittle crack initiation from surfaces of a stressed solid under
various mechanical conditions such as friction, wear, impact, etc.

Another topic of fundamental interest is to study the ductile vs brittle response to
cracks in various materials, including considerations of whether a solid is intrinsically
cleavable. Rice and Thomson (1974) proposed that such intrinsic cleavability is determined
by the competition between the cleavage decohesion and the crack-tip emission of blunting
dislocations. In other words, if the conditions for decohesion of crystal plane ahead of the
crack are reached before those for dislocation nucleation, it is then feasible to conclude that
the crystal will fail by cleavage. Previous investigations all rely on the assumption of a pre­
existing slit crack. The cycloid surface provides an ideal mechanical model to study the
issue of brittle crack initiation vs dislocation generation from a rough surface.

Numerical simulation of the kinetics ofsurface evolution
The analysis presented in this paper has provided some insights into the problem of

how a rough surface can be developed from an initially flat surface and how a cusped
cycloid surface can generate crack-like stress singularities which may lead to the nucleation
of brittle fracture or plastic deformation. However, the kinetics of how a surface evolves
under the influence ofchemical potential has not been addressed. This evolution will depend
on specific physical and chemical processes involved and the material parameters associated
with them. One has to resort to numerical techniques to simulate these processes. We have
tested and are currently implementing boundary integral type methods for carrying out this
task. During the surface evolution, for numerical convergence it is convenient to define a
cut-off wavenumber kcutoff so that high frequency numerical noises can be filtered out. When
instability occurs, kcutoff can be taken as kcr = 4wo/Y but it then increases with the maximum
strain energy density, WmaXl along the surface. It can be argued that kcutoff can be taken as:

kcutoff = 4wmax /Y· (80)

During the cusp formation, perturbations of increasingly higher frequencies are cal­
culated. This treatment seems to be important for constructing a properly convergent
numerical algorithm. Our numerical results will be reported in a forthcoming paper.

As a final remark, we note that stress-driven surface or interfacial instabilities like
those discussed in this paper are associated with a wide class ofmaterial instability problems.
One of the major objectives in modern materials research is to develop microstructures with
desirable physical properties. However, useful microstructures are almost always thermo­
dynamically unstable since for any material system there is only one completely stable
structure out of an infinite number of possible unstable or metastable structures. Interfacial
instabilities, notably that studied by Mullins and Sekerka (1964) for solidification under
constitutional supercooling conditions, have long been associated with such experimental
observations as dendritic and cellular crystal growth which leads to formation of grains in
polycrystalline solids. Fluid systems also exhibit interfacial instabilities that sometimes bear
mathematical analogy to those in solids (Peke, 1988); examples are the Rayleigh-Taylor
instability between accelerating fluids of different densities and the Saffman-Taylor insta­
bility in pressure-driven two-phase viscous flow in porous media. These problems provide
a rich variety of research opportunities.
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CONCLUSION

It is shown in this paper that a cusped cycloid surface can have the same effect of stress
concentration as an array of periodic parallel cracks. This connection between rough
surfaces and cracks may open new channels for a series of interesting mechanics problems
as have been discussed in this paper.

The development of a cusped cycloid surface from an initially flat surface is shown to
be energetically favorable once the wavelength of the rough surface exceeds a critical value
determined by the competition between the elastic energy and the surface energy. The
critical condition for formation of cycloid cusps is found to be just equal to the Griffith
energy balance G = 2y, i.e. the driving force on the cusp-singularity equals the resistance
force due to surface energy. If the plastic relaxation is fully suppressed and the solid is
under tension, it is found that the development of cusps results in spontaneous brittle
fracture.
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APPENDIX A: A CYCLOID SURFACE UNDER ANTIPLANE SHEAR

In the text we focused on the discussion of a cycloid surface subjected to a lateral inplane tension. For
comparison purposes, there may be some interest in solving the related and simpler problem of a cycloid surface
under remote antiplane shear stress T.

An antiplane elasticity problem can be stated as determining the displacement U3 = U3(XI,X2) that satisfies
the Laplacian equation:

(AI)

Here we use x" X 2 interchangeably with x,y to denote the inplane coordinate frame. The general solution to
(A I) is usually represented by a scalar complex potential fez) as:'

JlU3 = 1m [f(z)], 0'32 = Re[!I(z)], 0'31 = -Re[!iz)],

where z = x 1+ iX2' The resultant force along an inplane curve from a fixed point to z is:

p =f O'i3n,ds = - f Re[f,(z)]dx, = -Re[f(z)]+const.

The traction-free condition in the antiplane case can thus be stated as:

Re [fez)] = o.

(A2)

(A3)

(A4)

Now consider a cycloid surface subject to a remote antiplane shear loading T = 0')"1' Following the same
mapping procedure discussed in the text for inplane loading, let the &,olution be written as:

where foo (0 is the potential of the uniform field:

foo = iTZ = iT[C +iA exp( -ikC)].

Using the traction-free boundary condition:

Re [fooW +!sW] = 0,

and the fact that !s(C) is analytic in the lower half C-plane yields:

!s(C) = AT exp ( - ikC).

The final solution for the antiplane cycloid problem is thus:

f(C) = iTC·

The stress along the surface 0'3, can be written as :

The maximum stress at the cycloid valley is:

(A5)

(A6)

(A7)

(AB)

(A9)

(A10)

(AlI)

In contrast to the inplane tension case, the surface segment between two cycloid cusps is not stress-free under
antiplane shear.

For Ak = I, consider the local coordinate frame Cc aMi'cycloid cusp, the complex potential behaves asymp­
totically as :
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2KllI . r::
f(O = iTC+const = i -- e- m

/
4 V z,.

fir
(AI2)

This is just the standard mode III crack-tip field for a crack tip pointing in the negative y,. direction, with
stress intensity factor:

(AI3)

Interestingly, the stress intensity factor for an antiplane cycloid is formally identical to the inplane tension
case, but is different from the corresponding mode III periodic crack problem; the latter has stress intensity factor
(Tada et al., 1985):

(AI4)

For a fixed wavelength, the mode III stress intensity factor for the periodic cracks is about 40% (J:i - I)
larger than that for a cusped cycloid.

One can also study the strain energy variation associated with evolution of an antiplane cycloid surface. The
analysis presented in the text can be easily extended to this case and interested readers can verify that the result
corresponding to eqn (50) in the text is:

where

!'1U = -wonA',

Wo = r'/2/l.

(AI5)

(AI6)

Under the same bulk strain energy density, observe that the antiplane cycloid only releases half as much
strain energy as the inplane case.

APPENDIX B: A VARIATIONAL FORMULA FOR SURFACE ENERGY

Equation (52) in the text allows one to calculate the change in surface energy associated with evolution of a
cycloid surface. A variational form of the same formula, as expressed in eqn (53), is:

bE, = fl'K(s)n' bx ds. (BI)

This formula is equivalent to eqn (52) except for the cusp case Ak = I.
Letting the cycloid surface be rigidly translated a unit distance in the y direction obviously should leave the

surface energy unaffected. Using eqns (BI) and (64), this invariance requires that:

_ rk(Ak+cosk~)(I+Akcosk~) d _
I(Ak)- Jo (1+2Akcosk~+A'k')3I' ~-O. (B2)

(B3)

As will be shown shortly, this integral indeed vanishes as long as Ak "" I. However, in the cusp case Ak = I,
direct integration shows that /(1) = 2, violating the translational invariance requirement. Therefore, the variational
formula (BI) breaks down in the cusp case. In contrast, the direct formula in eqn (52) of the text is consistent
with eqn (B I) for 0 ,;; Ak < I and also has the advantage of remaining valid for Ak = I.

Using the corresponding expressions for K(S), n ds and bx given in eqns (52), (47), (46) of the text, the
variational formula for a cycloid surface can be rewritten as:

. I'Ak'(l-A'k')COSk~(Ak+coSk~)d!'
bE, =l'bA ~.

. 0 J(l +2Ak cos k~+A'k2)3

For 0,;; Ak < I, using the integral result in eqn (B2), it is not difficult to show that eqn (52) can be reduced
to eqn (53) or eqn (BI) via following steps:

- I' k(Ak+cos kO d!'
bE,-l'bA ~

o JI +2Ak cos k~+A'k'

I

, k(1 + 2Ak cos k~+A'k')(Ak+cos k~) d!'
= l'bA ~

o J(I+2Akcosk~+A'k')3

I

i. Ak'(l +Ak+cos k~)(Ak+cosk~) d!'
= ybA ~

o J(l +2Ak cos k~+A'k')3

I
i.Ak'(l-A'k')COSk~(Ak+coSke) !'

=~A ~
o J(l +2Ak cos k~+Ak2)3

= J: yK(s)n' bx ds. (B4)
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The integral in eqn (B2) can be reduced to a simpler form :

/(0) = f2" (0 + cos t)(1 +ecos t) dt
Jo (I +20 cos t+02)3/2 '

3011

(B5)

(B6)

which is identically zero for all - OCJ < 0 < OCJ except at two points 0 = ± I, where /(1) = -/(- I) = 2. To prove
this result, it suffices to consider 0 > 0 since one can easily verify that /(0) = -/( -0). Making a variable change
() = t/2, the integral can be rearranged into the following form:

2 f" 1-2 sin2 ()+m 2 sin4(J
/=- d(J

1+0 0 j(l-m2sin2(J)3 '

where

m = 20/(1 +0). (B7)

(B9)

(BIO)

(BII)

When 0 # I, m < I, one may extract the following integral formulae from Gradshteyn and Ryzhik (1980),

f" I d() = 2 E(~) (B8)
Jo J(I-m 2sin2(J)3 m

f" sin2() d(J = 2 E(m)-m'2K(m)

J
'2 2

o (I _m2sin2(J)3 m m

f" sin4(J _ (l+m'2)E(m)-2m'2K(m)
----;===~:::;d(J - 2 '2 4 '

o j(l_m2sin2 (J)3 m m

where K(m), E(m) are the standard elliptic integrals and

m' = jl_m2 = (1-0)/(1 +0).

Combining eqns (B6)-(Bll) leads to /(0) = 0 for 0 # I.

APPENDIX C: THE STRAIN ENERGY VARIATION ASSOCIATED WITH EVOLUTION OF A
CREST-LIKE CYCLOID SURFACE

In the text we studied cycloid surfaces which result in downward-pointing cusps as Ak -+ I. One may consider
another class of cycloid surfaces that results in crested cycloids having upward-pointing cusps as Ak -+ I. This
class is described by:

A 2k
x = ~-A sink~, y = A cosk~+2' (CI)

where the constant A 2k/2 is added for mass-conservation as the amplitude A varies. When Ak is somewhere
between 0 and I, eqn (CI) yields island-like shapes with somewhat sharp peaks separated by broad valleys. As
Ak -+ I, the surface develops into periodic crests at x = 2mr/k and y = 3A/2 (n is integer), a schematic diagram
of which is shown in Fig. 13. The perturbation analysis of slightly undulating surfaces by Gao (199Ia) indicated
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Fig. Cl. The strain energy release rate, ( -k/4nwo) aU/aA, associated with evolution of a cusp-like
and a crest-like cycloid surface.
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that protruding portions along a flat surface are unloaded very quickly from the bulk stress. Thus the surface
energy is expected to dominate along these portions, which precludes the formation of cycloid crests. However,
to support our analysis of cusped cycloid in the text we will firmly prove the conjecture that a crest-like surface
is energetically less favorable than the cusp case.

The stress problems for the crest cycloids can not be solved analytically because the mapping function involves
a term exp (ikO which is not analytic, hence not conformal, in the material region. We have implemented a
boundary-element type numerical method based on superposition ofcontinuous arrays of dislocations to simulate
cracks or traction-free rough surfaces (see discussions in the text). This numerical method has been used to verify
the relevant analytic solutions for a cusp-like cycloid surface and can be easily used to calculate solutions for the
crest-like case.

Figure 13 plots a nondimensional strain energy release rate per wavelength, (-k/4nwo) aU/aA, as a function
of the amplitude Ak. The accuracy of numerical solutions can be estimated by the J-integral condition in eqn (43)
in the text and by test of convergence as different mesh sizes are adopted. The strain energy release rate is
determined from the variational integral in eqn (44). Also plotted for comparison in Fig. 13 is the corresponding
energy release rate in the cusp case, which is a straight line given in eqn (49). For small amplitudes Ak« I, the
energy release rate for both crest-like and cusp-like cycloids reduces to the corresponding perturbation result
derived by Gao (1991 b) since both types of surfaces asymptotically approach the same cosine curve. As the cycloid
amplitude Ak increases, the energy release rate of a cusp-like cycloid increases linearly all the way up to the cusp
limit. In contrast, fairly large nonlinear behavior exhibits in the energy release rate for a crest-like cycloid, resulting
in a substantial energy difference between the two cases. The aU/BA for a crest-like cycloid reaches maximum at
about Ak = 0.4 and then declines as Ak further increases. The overall strain energy reduction can be calculated
by integrating BU/BA and is found to be over four times larger in the cusp case than in the crest case. The surface
energy change is identical for both cases since for equal cycloid amplitudes the surface area change is the same.
Therefore we conclude that the cusped configuration is enegetically more favorable compared to the crested case.
Also, a simple singularity analysis would show that the stresses and the strain density at the crest tip are identically
zero, suggesting that local surface diffusion would immediately smooth out any surface crests if they ever exist.


